Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Carcinog ; 63(5): 977-990, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38376344

RESUMO

Nickel pollution is a recognized factor contributing to lung cancer. Understanding the molecular mechanisms of its carcinogenic effects is crucial for lung cancer prevention and treatment. Our previous research identified the downregulation of a long noncoding RNA, maternally expressed gene 3 (MEG3), as a key factor in transforming human bronchial epithelial cells (HBECs) into malignant cells following nickel exposure. In our study, we found that deletion of MEG3 also reduced the expression of RhoGDIß. Notably, artificially increasing RhoGDIß levels counteracted the malignant transformation caused by MEG3 deletion in HBECs. This indicates that the reduction in RhoGDIß contributes to the transformation of HBECs due to MEG3 deletion. Further exploration revealed that MEG3 downregulation led to enhanced c-Jun activity, which in turn promoted miR-200c transcription. High levels of miR-200c subsequently increased the translation of AUF1 protein, stabilizing SOX2 messenger RNA (mRNA). This stabilization affected the regulation of miR-137, SP-1 protein translation, and the suppression of RhoGDIß mRNA transcription and protein expression, leading to cell transformation. Our study underscores the co-regulation of RhoGDIß expression by long noncoding RNA MEG3, multiple microRNAs (miR-200c and miR-137), and RNA-regulated transcription factors (c-Jun, SOX2, and SP1). This intricate network of molecular events sheds light on the nature of lung tumorigenesis. These novel findings pave the way for developing targeted strategies for the prevention and treatment of human lung cancer based on the MEG3/RhoGDIß pathway.


Assuntos
Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regulação para Baixo , Inibidor beta de Dissociação do Nucleotídeo Guanina rho/genética , Níquel , MicroRNAs/genética , MicroRNAs/metabolismo , Células Epiteliais/metabolismo , Transformação Celular Neoplásica/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , RNA Mensageiro , Proliferação de Células/genética , Fatores de Transcrição SOXB1/genética
2.
Oncogene ; 43(12): 899-917, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38317006

RESUMO

Dysregulation of MOF (also known as MYST1, KAT8), a highly conserved H4K16 acetyltransferase, plays important roles in human cancers. However, its expression and function in esophageal squamous cell carcinoma (ESCC) remain unknown. Here, we report that MOF is highly expressed in ESCC tumors and predicts a worse prognosis. Depletion of MOF in ESCC significantly impedes tumor growth and metastasis both in vitro and in vivo, whereas ectopic expression of MOF but not catalytically inactive mutant (MOF-E350Q) promotes ESCC progression, suggesting that MOF acetyltransferase activity is crucial for its oncogenic activity. Further analysis reveals that USP10, a deubiquitinase highly expressed in ESCC, binds to and deubiquitinates MOF at lysine 410, which protects it from proteosome-dependent protein degradation. MOF stabilization by USP10 promotes H4K16ac enrichment in the ANXA2 promoter to stimulate ANXA2 transcription in a JUN-dependent manner, which subsequently activates Wnt/ß-Catenin signaling to facilitate ESCC progression. Our findings highlight a novel USP10/MOF/ANXA2 axis as a promising therapeutic target for ESCC.


Assuntos
Anexina A2 , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Via de Sinalização Wnt/genética , Neoplasias Esofágicas/patologia , Proliferação de Células/genética , Acetiltransferases/metabolismo , Epigênese Genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Histona Acetiltransferases/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Anexina A2/metabolismo
3.
J Exp Clin Cancer Res ; 43(1): 50, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38365726

RESUMO

BACKGROUND: Phosphatase and tensin homolog deleted on chromosome ten (PTEN) serves as a powerful tumor suppressor, and has been found to be downregulated in human bladder cancer (BC) tissues. Despite this observation, the mechanisms contributing to PTEN's downregulation have remained elusive. METHODS: We established targeted genes' knockdown or overexpressed cell lines to explore the mechanism how it drove the malignant transformation of urothelial cells or promoted anchorageindependent growth of human basal muscle invasive BC (BMIBC) cells. The mice model was used to validate the conclusion in vivo. The important findings were also extended to human studies. RESULTS: In this study, we discovered that mice exposed to N-butyl-N-(4-hydroxybu-tyl)nitrosamine (BBN), a specific bladder chemical carcinogen, exhibited primary BMIBC accompanied by a pronounced reduction in PTEN protein expression in vivo. Utilizing a lncRNA deep sequencing high-throughput platform, along with gain- and loss-of-function analyses, we identified small nucleolar RNA host gene 1 (SNHG1) as a critical lncRNA that might drive the formation of primary BMIBCs in BBN-treated mice. Cell culture results further demonstrated that BBN exposure significantly induced SNHG1 in normal human bladder urothelial cell UROtsa. Notably, the ectopic expression of SNHG1 alone was sufficient to induce malignant transformation in human urothelial cells, while SNHG1 knockdown effectively inhibited anchorage-independent growth of human BMIBCs. Our detailed investigation revealed that SNHG1 overexpression led to PTEN protein degradation through its direct interaction with HUR. This interaction reduced HUR binding to ubiquitin-specific peptidase 8 (USP8) mRNA, causing degradation of USP8 mRNA and a subsequent decrease in USP8 protein expression. The downregulation of USP8, in turn, increased PTEN polyubiquitination and degradation, culminating in cell malignant transformation and BMIBC anchorageindependent growth. In vivo studies confirmed the downregulation of PTEN and USP8, as well as their positive correlations in both BBN-treated mouse bladder urothelium and tumor tissues of bladder cancer in nude mice. CONCLUSIONS: Our findings, for the first time, demonstrate that overexpressed SNHG1 competes with USP8 for binding to HUR. This competition attenuates USP8 mRNA stability and protein expression, leading to PTEN protein degradation, consequently, this process drives urothelial cell malignant transformation and fosters BMIBC growth and primary BMIBC formation.


Assuntos
RNA Longo não Codificante , Neoplasias da Bexiga Urinária , Animais , Humanos , Camundongos , Carcinogênese/genética , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Camundongos Nus , Músculos/metabolismo , Músculos/patologia , Proteólise , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , RNA Longo não Codificante/genética , RNA Mensageiro/metabolismo , Regulação para Cima , Neoplasias da Bexiga Urinária/induzido quimicamente , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo
4.
Acta Pharmacol Sin ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228910

RESUMO

Paclitaxel resistance is associated with a poor prognosis in non-small cell lung cancer (NSCLC) patients, and currently, there is no promising drug for paclitaxel resistance. In this study, we investigated the molecular mechanisms underlying the chemoresistance in human NSCLC-derived cell lines. We constructed paclitaxel-resistant NSCLC cell lines (A549/PR and H460/PR) by long-term exposure to paclitaxel. We found that triptolide, a diterpenoid epoxide isolated from the Chinese medicinal herb Tripterygium wilfordii Hook F, effectively enhanced the sensitivity of paclitaxel-resistant cells to paclitaxel by reducing ABCB1 expression in vivo and in vitro. Through high-throughput sequencing, we identified the SHH-initiated Hedgehog signaling pathway playing an important role in this process. We demonstrated that triptolide directly bound to HNF1A, one of the transcription factors of SHH, and inhibited HNF1A/SHH expression, ensuing in attenuation of Hedgehog signaling. In NSCLC tumor tissue microarrays and cancer network databases, we found a positive correlation between HNF1A and SHH expression. Our results illuminate a novel molecular mechanism through which triptolide targets and inhibits HNF1A, thereby impeding the activation of the Hedgehog signaling pathway and reducing the expression of ABCB1. This study suggests the potential clinical application of triptolide and provides promising prospects in targeting the HNF1A/SHH pathway as a therapeutic strategy for NSCLC patients with paclitaxel resistance. Schematic diagram showing that triptolide overcomes paclitaxel resistance by mediating inhibition of the HNF1A/SHH/ABCB1 axis.

5.
Ecotoxicol Environ Saf ; 271: 115954, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38232523

RESUMO

BACKGROUND: Nickel is a confirmed human lung carcinogen. Nonetheless, the molecular mechanisms driving its carcinogenic impact on lung tissue remain poorly defined. In this study, we assessed SESN2 expression and the signaling pathways responsible for cellular transformation in human bronchial epithelial cells (HBECs) as a result of nickel exposure. METHODS: We employed the Western blotting to determine the induction of SESN2 by nickel. To clarify the signaling pathways leading to cellular transformation following nickel exposure, we applied techniques such as gene knockdown, methylation-specific PCR, and chromatin immunoprecipitation. RESULT: Exposure to nickel results in the upregulation of SESN2 and the initiation of autophagy in human bronchial epithelial cells (HBECs). This leads to degradation of HUR protein and consequently downregulation of USP28 mRNA, PP2AC protein, ß-catenin protein, and diminished VHL transcription, culminating in the accumulation of hypoxia-inducible factor-1α (HIF-1α) and the malignant transformation of these cells. Mechanistic studies revealed that the increased expression of SESN2 is attributed to the demethylation of the SESN2 promoter induced by nickel, a process facilitated by decreased DNA methyl-transferase 3 A (DNMT3a) expression, while The downregulation of VHL transcription is linked to the suppression of the PP2A-C/GSK3ß/ß-Catenin/C-Myc pathway. Additionally, we discovered that SESN2-mediated autophagy triggers the degradation of HUR protein, which subsequently reduces the stability of USP28 mRNA and inhibits the PP2A-C/GSK3ß/ß-Catenin pathway and c-Myc transcription in HBECs post nickel exposure. CONCLUSION: Our results reveal that nickel exposure leads to the downregulation of DNMT3a, resulting in the hypomethylation of the SESN2 promoter and its protein induction. This triggers autophagy-dependent suppression of the HUR/USP28/PP2A/ß-Catenin/c-Myc pathway, subsequently leading to reduced VHL transcription, accumulation of HIF-1α protein, and the malignant transformation of human bronchial epithelial cells (HBECs). Our research offers novel insights into the molecular mechanisms that underlie the lung carcinogenic effects of nickel exposure. Specifically, nickel induces aberrant DNA methylation in the SESN2 promoter region through the decrease of DNMT3a levels, which ultimately leads to HIF-1α protein accumulation and the malignant transformation of HBECs. Specifically, nickel initiates DNA-methylation of the SESN2 promoter region by decreasing DNMT3a, ultimately resulting in HIF-1α protein accumulation and malignant transformation of HBECs. This study highlights DNMT3a as a potential prognostic biomarker or therapeutic target to improve clinical outcomes in lung cancer patients.


Assuntos
Níquel , beta Catenina , Humanos , Níquel/toxicidade , Níquel/metabolismo , beta Catenina/metabolismo , Sestrinas/metabolismo , Regulação para Cima , Transferases/metabolismo , Proteína Semelhante a ELAV 1/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Células Epiteliais/metabolismo , Transformação Celular Neoplásica/genética , DNA/metabolismo , RNA Mensageiro/metabolismo , Ubiquitina Tiolesterase/metabolismo
6.
Mol Cell Biochem ; 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38041756

RESUMO

Since invasive cancer is associated with poor clinical outcomes, exploring the molecular mechanism underlying LUAD progression is crucial to improve the prognosis of patients with advanced disease. Herein, we found that MYO16-AS1 is expressed mainly in lung tissue but is notably downregulated in LUAD tissues. Overexpression of MYO16-AS1 inhibited the migration and invasion of LUAD cells. Mechanistic studies indicated that H3K27Ac modification mediated MYO16-AS1 transcription. Furthermore, we found that MYO16-AS1 competitively bound to the IGF2BP3 protein and in turn reduced IGF2BP3 protein binding to HK2 mRNA, decreasing HK2 mRNA stability and inhibiting glucose metabolism reprogramming and LUAD cell invasion in vitro and in vivo. The finding that the MYO16-AS1/IGF2BP3-mediated glucose metabolism reprogramming mechanism regulates HK2 expression provides novel insight into the process of LUAD invasion and suggests that MYO16-AS1 may be a therapeutic target for LUAD.

7.
Respir Res ; 24(1): 276, 2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-37953225

RESUMO

BACKGROUND: Lung cancer represents a significant public health issue in China, given its high incidence and mortality rates. Circular RNAs (circRNAs) have been recently proposed to participate in the development and progression of tumors. Nevertheless, their particular roles in the pathogenesis of lung adenocarcinoma (LUAD), the tumor microenvironment (TME), and the underlying molecular mechanisms are still not well understood. METHODS: High-throughput sequencing was used to analyze the circRNAs expression profiles in 7 pairs of human LUAD tissues. shRNA was used to knockdown the YAP1 and FGB genes. RNA sequencing and RT-qPCR were performed to classify the regulatory effects of circ_16601 in LUAD cells. The progression effect of circ_16601 on lung cancer was investigated in vitro and in vivo. RESULTS: The circ_16601 is significantly elevated in LUAD tissues compared to adjacent normal lung tissues, and its high expression is positively associated with poor prognosis in LUAD patients. Additionally, circ_16601 overexpression promotes LUAD cell proliferation in vitro and increases xenograft tissue growth in mice in vivo; circ_16601 also could recruit fibroblasts to cancer associate fibroblasts. Mechanistically, circ_16601 can directly bind to miR-5580-5p, preventing its ability to degrade FGB mRNA and enhancing its stability. Subsequently, circ_16601 promotes the activation of the Hippo pathway in a YAP1-dependent manner, leading to LUAD progression. CONCLUSIONS: Our findings shed valuable insights into the regulatory role of circ_16601 in LUAD progression and highlight its potential as a diagnostic and therapeutic target in LUAD. Overall, this study provides theoretical support to improve the prognosis and quality of life of patients suffering from this devastating disease.


Assuntos
Adenocarcinoma de Pulmão , Via de Sinalização Hippo , Neoplasias Pulmonares , MicroRNAs , RNA Circular , Animais , Humanos , Camundongos , Adenocarcinoma de Pulmão/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Fibrinogênio , Neoplasias Pulmonares/genética , MicroRNAs/genética , RNA Circular/genética , Microambiente Tumoral
8.
Cancer Sci ; 114(9): 3608-3622, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37417427

RESUMO

Increasing evidence has shown that circular RNAs (circRNAs) interact with RNA-binding proteins (RBPs) and promote cancer progression. However, the function and mechanism of the circRNA/RBP complex in esophageal squamous cell carcinoma (ESCC) are still largely unknown. Herein, we first characterized a novel oncogenic circRNA, circ-FIRRE, by RNA sequencing (Ribo-free) profiling of ESCC samples. Furthermore, we observed marked circ-FIRRE overexpression in ESCC patients with high TNM stage and poor overall survival. Mechanistic studies indicated that circ-FIRRE, as a platform, interacts with the heterogeneous nuclear ribonucleoprotein C (HNRNPC) protein to stabilize GLI2 mRNA by directly binding to its 3'-UTR in the cytoplasm, thereby resulting in elevated GLI2 protein expression and subsequent transcription of its target genes MYC, CCNE1, and CCNE2, ultimately contributing to ESCC progression. Moreover, HNRNPC overexpression in circ-FIRRE knockdown cells notably abolished circ-FIRRE knockdown-mediated Hedgehog pathway inhibition and ESCC progression impairment in vitro and in vivo. Clinical specimen results showed that circ-FIRRE and HNRNPC expression was positively correlated with GLI2 expression, which reveals the clear significance of the circ-FIRRE/HNRNPC-GLI2 axis in ESCC. In summary, our results indicate that circ-FIRRE could serve as a valuable biomarker and potential therapeutic target for ESCC and highlight a novel mechanism of the circ-FIRRE/HNRNPC complex in ESCC progression regulation.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Humanos , Carcinoma de Células Escamosas do Esôfago/patologia , RNA Circular/genética , RNA Circular/metabolismo , Neoplasias Esofágicas/patologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , RNA Mensageiro/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , MicroRNAs/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Linhagem Celular Tumoral , Proteína Gli2 com Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/metabolismo , Proteínas Nucleares/genética
9.
Ecotoxicol Environ Saf ; 263: 115273, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37480691

RESUMO

Lung cancer primarily arises from exposure to various environmental factors, particularly airborne pollutants. Among the various lung carcinogens, benzo(a)pyrene and its metabolite B[a]PDE are the strongest ones that actively contribute to lung cancer development. ATG7 is an E1-like activating enzyme and contributes to activating autophagic responses in mammal cells. However, the potential alterations of ATG7 and its role in B[a]PDE-caused lung carcinogenesis remain unknown. Here, we found that B[a]PDE exposure promoted ATG7 expression in mouse lung tissues, while B[a]PDE exposure resulted in ATG7 induction in human normal bronchial epithelial cells. Our studies also demonstrated a significant correlation between high ATG7 expression levels and poor overall survival in lung cancer patients. ATG7 knockdown significantly repressed Beas-2B cell transformation upon B[a]PDE exposure, and such promotive effect of ATG7 on cell transformation mediated the p27 translation inhibition. Further studies revealed that miR-373 inhibition was required to stabilize ATG7 mRNA, therefore increasing ATG7 expression following B[a]PDE exposure, while ATG7 induction led to the autophagic degradation of the DNA methyltransferase 3 Beta (DNMT3B) protein, in turn promoted miR-494 transcription via its promoter region methylation status suppression. We also found that the miR-494 upregulation inhibited p27 protein translation and promoted bronchial epithelial cell transformation via its directly targeting p27 mRNA 3'-UTR region. Current studies, to the best of our knowledge, are for the first time to identify that ATG7 induction and its mediated autophagy is critical for B[a]PDE-induced transformation of human normal epithelial cells.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Humanos , Animais , Camundongos , Proteólise , Metilação , Regulação para Cima , Células Epiteliais , Regiões Promotoras Genéticas , MicroRNAs/genética , Mamíferos
10.
Cancer Sci ; 114(7): 2835-2847, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37017121

RESUMO

Circular RNAs (circRNAs) play a pivotal role in the tumorigenesis and progression of various cancers. However, the role and mechanisms of circABCA13 in esophageal squamous cell carcinoma (ESCC) are largely unknown. Here, we reported that circABCA13, a novel circular RNA generated by back-splicing of the intron of the ABCA13 gene, is highly expressed in ESCC tumor tissues and cell lines. Upregulation of circABCA13 correlated with TNM stage and a poor prognosis in ESCC patients. While knockdown of circABCA13 in ESCC cells significantly reduced cell proliferation, migration, invasion, and anchorage-independent growth, overexpression of circABCA13 facilitated tumor growth both in vitro and in vivo. In addition, circABCA13 directly binds to miR-4429 and sequesters miR-4429 from its endogenous target, SRXN1 mRNA, which subsequently upregulates SRXN1 and promotes ESCC progression. Consistently, overexpression of miR-4429 or knockdown of SRXN1 abolished malignant behavior promotion of ESCC results from circABCA13 overexpression in vitro and in vivo. Collectively, our study uncovered the oncogenic role of circABCA13 and its mechanism in ESCC, suggesting that circABCA13 could be a potential therapeutic target and a predictive biomarker for ESCC patients.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Humanos , Carcinoma de Células Escamosas do Esôfago/patologia , Neoplasias Esofágicas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação para Cima/genética , Biomarcadores , Proliferação de Células/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Movimento Celular/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo
12.
Exp Ther Med ; 25(1): 63, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36605530

RESUMO

Lung adenocarcinoma (LUAD) is the predominant pathological subtype of lung cancer, which is the most prevalent and lethal malignancy worldwide. Cyclins have been reported to regulate the physiology of various types of tumors by controlling cell cycle progression. However, the key roles and regulatory networks associated with the majority of the cyclin family members in LUAD remain unclear. In total, 556 differentially expressed genes were screened from the GSE33532, GSE40791 and GSE19188 mRNA microarray datasets by R software. Subsequently, protein-protein interaction network containing 499 nodes and 4,311 edges, in addition to a significant module containing 76 nodes and 2,631 edges, were extracted through the MCODE plug-in of Cytoscape. A total of four cyclin family genes [cyclin (CCNA2, CCNB1, CCNB2 and CCNE2] were then found in this module. Further co-expression analysis and associated gene prediction revealed forkhead box M1 (FOXM1), the common transcription factor of CCNB2, CCNB1 and CCNA2. In addition, using GEPIA database, it was found that the high expression of these four genes were simultaneously associated with poorer prognosis in patients with LUAD. Experimentally, it was proved that these four hub genes were highly expressed in LUAD cell lines (Beas-2B and H1299) and LUAD tissues through qPCR, western blot analysis and immunohistochemical studies. The diagnostic value of these 4 hub genes in LUAD was analyzed by logistic regression, CCNA2 was deleted, following which a nomogram diagnostic model was constructed accordingly. The area under the curve values of CCNB1, CCNB2 and FOXM1 diagnostic models were calculated to be 0.92, 0.91 and 0.96 in the training set (Combined dataset of GSE33532, GSE40791 and GSE19188) and two validation sets (GSE10072 and GSE75037), respectively. To conclude, data from the present study suggested that the FOXM1/cyclin (CCNA2, CCNB1 and/or CCNB2) axis may serve a regulatory role in the development and prognosis of LUAD. Specifically, CCNB1, CCNB2 and FOXM1 have potential as diagnostic markers and/or therapeutic targets for LUAD treatment.

13.
Int J Nanomedicine ; 18: 95-114, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36636641

RESUMO

Background: Cancer cell-derived exosomal microRNAs (miRNAs) play critical role in orchestrating intercellular communication between tumor cells and tumor microenvironmental factors, including lymphatic endothelial cells (LECs). Nevertheless, the functions and underlying mechanisms of exosomal miRNAs in lymphatic metastasis and lymphangiogenesis in esophageal squamous cell carcinoma (ESCC) remain unclear. Methods: Small RNA sequencing, Gene Expression Omnibus (GEO) analysis and qRT‒PCR were performed to identify the candidate exosomal miRNAs involved in ESCC metastasis. Receiver operating characteristic curve analysis was conducted to evaluate the diagnostic potential of exosomal miR-10527-5p in predicting lymph node metastasis (LNM) status. An in vitro coculture system was used to investigate the effects of exosomal miR-10527-5p on ESCC cells and human LECs (HLECs), followed by a popliteal LNM assay in vivo. The relationship between miR-10527-5p and Rab10 was identified by dual-luciferase reporter, fluorescence in situ hybridization and qRT‒PCR assays. Then, a series of rescue assays were performed to further investigate whether Rab10 is involved in exosomal miR-10527-5p mediated ESCC metastasis. Results: MiR-10527-5p was found to be notably reduced in both the plasma exosomes and tumor tissues of ESCC patients with LNM, and plasma exosomal miR-10527-5p had a high sensitivity and specificity for discrimination of LNM status. Moreover, exosome-shuttled miR-10527-5p suppressed the migration, invasion and epithelial-to-mesenchymal transition (EMT) of ESCC cells as well as the migration and tube formation of HLECs via Wnt/ß-catenin signaling in vitro and in vivo. Further investigation revealed that Rab10 was a direct target of miR-10527-5p, and re-expression of Rab10 neutralized the inhibitory effects of exosomal miR-10527-5p. Conclusion: Our study demonstrated that exosomal miR-10527-5p had a strong capability to predict preoperative LNM status and anti-lymphangiogenic effect. Exosomal miR-10527-5p inhibited lymphangiogenesis and lymphatic metastasis of ESCC in a vascular endothelial growth factor-C (VEGF-C)-independent manner, showing potential as a therapeutic target for ESCC patients.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Metástase Linfática , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/metabolismo , Neoplasias Esofágicas/genética , Linfangiogênese/genética , beta Catenina/metabolismo , Células Endoteliais/metabolismo , Hibridização in Situ Fluorescente , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Via de Sinalização Wnt , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Movimento Celular
14.
Cell Death Dis ; 13(12): 1021, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36470870

RESUMO

Esophageal squamous carcinoma (ESCC) is the major subtype of esophageal cancer in China, accounting for 90% of cases. Recent studies revealed that abnormalities in the Hippo/YAP axis are pervasive in ESCC and are recognized as the important driver of ESCC progression. Since the activity of Hippo signaling is controlled by phosphorylation cascade, it is a mystery why the major effector YAP is still over-activated when the cascade is inhibited. Several studies suggested that in addition to phosphorylation, other protein modifications such as ubiquitination also play important roles in manipulating Hippo/YAP signaling activity. Since YAP protein stability is controlled via an appropriate balance between E3 ubiquitin ligases and deubiquitinases, we performed deubiquitinase siRNA screening and identified USP36 as a deubiquitinase significantly related to Hippo/YAP signaling activity and ESCC progression. USP36 expression was elevated in ESCC samples and correlated with poor differentiation. USP36 expression was correlated with YAP protein levels in ESCC samples. Molecular studies demonstrated that USP36 associated with the YAP protein and enhanced YAP protein stability by blocking the K48-linked polyubiquitination of YAP. In conclusion, our study revealed a novel deubiquitinase in regulating Hippo signaling in ESCC, which could be an encouraging drug target for Hippo-driven ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Ubiquitina Tiolesterase , Proteínas de Sinalização YAP , Humanos , Proliferação de Células/genética , Enzimas Desubiquitinantes , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Via de Sinalização Hippo , Proteínas de Sinalização YAP/metabolismo
15.
Cell Death Dis ; 13(12): 1076, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575197

RESUMO

The function and underlying mechanisms of p50 in the regulation of protein expression is much less studied because of its lacking of transactivation domain. In this study, we discovered a novel function of p50 in its stabilization of hypoxia-inducible factor 1α (HIF-1α) protein under the condition of cells exposed to arsenic exposure. In p50-deficient (p50-/-) cells, the HIF-1α protein expression was impaired upon arsenic exposure, and such defect could be rescued by reconstitutional expression of p50. Mechanistic study revealed that the inhibition of autophagy-related gene 7 (ATG7)-dependent autophagy was in charge of p50-mediated HIF-1α protein stabilization following arsenic exposure. Moreover, p50 deletion promoted nucleolin (NCL) protein translation to enhance ATG7 mRNA transcription via directly binding transcription factor Sp1 mRNA and increase its stability. We further discovered that p50-mediated miR-494 upregulation gave rise to the inhibition of p50-mediated NCL translation by interacting with its 3'-UTR. These novel findings provide a great insight into the understanding of biomedical significance of p50 protein in arsenite-associated disease development and therapy.


Assuntos
Arsênio , Transcrição Gênica , Regulação para Cima , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Autofagia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
16.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36293387

RESUMO

SOX2, a member of the SRY-related HMG-box (SOX) family, is abnormally expressed in many tumors and associated with cancer stem cell-like properties. Previous reports have shown that SOX2 is a biomarker for cancer stem cells in human bladder cancer (BC), and our most recent study has indicated that the inhibition of SOX2 by anticancer compound ChlA-F attenuates human BC cell invasion. We now investigated the mechanisms through which SOX2 promotes the invasive ability of BC cells. Our studies revealed that SOX2 promoted SKP2 transcription and increased SKP2-accelerated Sp1 protein degradation. As Sp1 is a transcriptionally regulated gene, HUR transcription was thereby attenuated, and, in the absence of HUR, FOXO1 mRNA was degraded fast, which promoted BC cell invasion. In addition, SOX2 promoted BC invasion through the upregulation of nucleolin transcription, which resulted in increased MMP2 mRNA stability and expression. Collectively, our findings show that SOX2 promotes BC invasion through both SKP2-Sp1-HUR-FOXO1 and nucleolin-MMP2 dual axes.


Assuntos
MicroRNAs , Neoplasias da Bexiga Urinária , Humanos , Regulação para Baixo , Regulação para Cima , Neoplasias da Bexiga Urinária/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Linhagem Celular Tumoral , Biomarcadores , RNA Mensageiro/genética , Invasividade Neoplásica/patologia , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo
17.
Cell Death Dis ; 13(8): 753, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36045117

RESUMO

Although our previous studies have identified that isorhapontigenin (ISO) is able to initiate autophagy in human bladder cancer (BC) cells by activating JNK/C-Jun/SESN2 axis and possesses an inhibitory effect on BC cell growth, association of autophagy directly with inhibition of BC invasion has never been explored. Also, upstream cascade responsible for ISO activating JNK remains unknown. Thus, we explored both important questions in the current study and discovered that ISO treatment initiated RAC1 protein translation, and its downstream kinase MKK7/JNK phosphorylation/activation, and in turn promoted autophagic responses in human BC cells. Inhibition of autophagy abolished ISO inhibition of BC invasion, revealing that autophagy inhibition was crucial for ISO inhibition of BC invasion. Consistently, knockout of RAC1 also attenuated induction of autophagy and inhibition of BC invasion by ISO treatment. Mechanistic studies showed that upregulation of RAC1 translation was due to ISO inhibition of miR-365a transcription, which reduced miR-365a binding to the 3'-UTR of RAC1 mRNA. Further study indicated that inhibition of miR-365a transcription was caused by downregulation of its transcription factor SOX2, while ISO-promoted Dicer protein translation increased miR-145 maturation, and consequently downregulating SOX2 expression. These findings not only provide a novel insight into the understanding association of autophagy induction with BC invasion inhibition by ISO, but also identify an upstream regulatory cascade, Dicer/miR145/SOX2/miR365a/RAC1, leading to MKK7/JNKs activation and autophagy induction.


Assuntos
MicroRNAs , Neoplasias da Bexiga Urinária , Regiões 3' não Traduzidas , Autofagia/genética , Linhagem Celular Tumoral , RNA Helicases DEAD-box , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Nucleares/metabolismo , Fosforilação , Biossíntese de Proteínas , Ribonuclease III , Fatores de Transcrição SOXB1/metabolismo , Sestrinas , Estilbenos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
18.
Transl Lung Cancer Res ; 11(5): 802-816, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35693277

RESUMO

Background: The mutation rate of the tumor protein P53 (TP53) has been reported to be greater than 50% in non-small cell lung cancer (NSCLC), and gain-of-function (GOF) mutations in unfolded P53 (TP53R175H and TP53Y220C) have been associated with poor prognosis. However, the best treatment for patients with NSCLC harboring unfolded mutant P53 (mutp53) remains unclear. Triptolide is a natural compound derived from Tripterygium wilfordii that has shown a strong antitumor effect in a variety of cancers. Our study aimed to explore the GOF mutations in unfolded mutp53 (TP53R175H and TP53Y220C) and to clarify the molecular mechanisms by which triptolide regulates the degradation of unfolded mutp53 proteins in NSCLC. Methods: Two unfolded proteins harboring TP53R175H and TP53Y220C mutations were selected to explore their functions in NSCLC progression. NCI-H1299 cells (TP53-null) were transfected with wild-type TP53 (TP53WT), TP53R175H, or TP53Y220C genes and treated with triptolide or a vehicle. Wound healing and transwell assays were performed to measure cell migration and invasion in vitro. Lung metastasis models were constructed through tail vein injection of mutant cells into BALB/c nude mice to evaluate the effect of triptolide on metastasis in vivo. Western blotting, quantitative real-time polymerase chain reaction (qRT-PCR), immunoprecipitation, and dual-luciferase reporter assays were performed to explore the relevant molecular mechanisms. Results: Our study revealed that triptolide treatment reduced TP53R175H levels and that the TP53Y220C mutation enhanced the invasion and migration of NCI-H1299 cells. Mechanistically, triptolide promoted TP53R175H and TP53Y220C protein proteasomal degradation mediated through the E3 ligase murine double minute 2 (MDM2) by directly interacting with heat shock protein 70 (HSP70). Moreover, by upregulating HSP70 transcription, triptolide contributed to the protein degradation of the GOF mutp53. Conclusions: Our study reports, for the first time, the mechanism underlying triptolide-regulated protein degradation of TP53R175H or TP53Y220C, which offers new insight into developing a better therapeutic strategy for patients with NSCLC who express the unfolded mutp53 GOF protein.

19.
Cell Cycle ; : 1-14, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35532178

RESUMO

Bladder cancer (BC) is the most expensive cancer to manage on a per-patient basis, costing about $4 billion in total healthcare expenditure per annum in America alone. Therefore, identifying a natural compound for prevention of BC is of tremendous importance for managing this disease. Previous studies have identified isorhapontigenin (ISO) as having an 85% preventive effect against invasive BC formation induced by N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN). The results showed here that ISO treatment inhibited EGF-induced cell transformation of human urothelial cells through induction of tumor suppressor p27 transcription secondary to activation of an E2F1-dependentpathway.ISOtreatmentrenderedcellsresistanttoEGF-induced anchorage-independent growth concurrent with p27 protein induction in both UROtsa and SV-HUC-1 cells. ISO inhibition of EGF-induced cell transformation could be completely reversed by knockdown of p27, indicating that this protein was essential for the noted ISO inhibitory action. Mechanistic studies revealed that ISO treatment resulted in increased expression of E2F1, which in turn bound to its binding site in p27 promoter and initiated p27 transcription. The E2F1 induction was due to the elevation of its translation caused by ISO-induced miR-205 downregulation. Consistently, miR-205 was found to be overexpressed in human BCs, and ectopic expression of miR-205 mitigated ISO inhibitory effects against EGF-induced outcomes. Collectively, the results here demonstrate that ISO exhibits its preventive effect on EGF-induced human urothelial cell transformation by induction of p27 through a miR-205/E2F1 axis. This is distinct from what has been described for the therapeutic effects of ISO on human BC cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...